

National Renewable Energy Laboratory Innovation for Our Energy Future Low Energy Building and Campus Design NASA 2010 International Workshop on Environment and Alternative Energy

Otto Van Geet, PE **November 2, 2010**

Sustainability principles for NREL's campus build-out

- Campus to reflect our mission/sustainable values
- Consolidate staff on the STM campus
- Preserve the natural environment
- Enhance DOE & NREL's visibility with the public
- Consolidate parking and use alternative transportation
- Improve pedestrian circulation
- More indoor and outdoor informal gathering spaces
- A more cohesive/integrated look

"Our research is so important, but I'm afraid that it will not bring us half the notoriety as a cutting edge, environmentally sound, high performing campus. That may be the best teaching and outreach campus we can offer the public"

Integrated Design

Cost Transfer

Transfer costs from mechanical and electrical systems to building architecture

Integrated Design

Design Simulations

- Energy modeling
- Daylight modeling
- Natural ventilation modeling
- Thermal mass modeling
- And all must meet the Cost Model

Credit: EMC Engineers

Research Support Facility

Research Support Facility

"Raise the national standard for high-performance commercial buildings and effectively transfer this knowledge to other
- DOE Expectations letter

Create a "national showcase" -

 demonstrate how high-performance buildings can be aesthetically compelling, acquired at competitive first-cost and life-cycle cost, and through integrated design, can reduce performance risks to the owner, constructor and financier

Problem Definition – Proposal Objectives Checklist

MISSION CRITICAL

Attain safe work performance/Safe Design Practices

LEED Platinum

Energy Star "Plus"

HIGHLY DESIRABLE

800 staff Capacity

25kBTU/sf/year

Architectural integrity

Honor future staff needs

Measurable ASHRAE 90.1

Support culture and amenities

Expandable building

Ergonomics

Flexible workspace

Support future technologies

Documentation to produce a "How to" manual

"PR" campaign implemented in real-time

Allow secure collaboration with outsiders

Building information modeling

Substantial Completion by 2010

IF POSSIBLE

Net Zero/design approach
Most energy efficient building in

the world

LEED Platinum Plus

ASHRAE 90.1 + 50%

Visual displays of current energy efficiency

Support public tours

Achieve national and global recognition and

awards

Support personnel turnover

RSF: Problem Statement

- 800 people
- 220,000 ft²
- 35 kBtu/ft²
- LEED Platinum +
- 50% energy savings
- \$259/ft²
- Replicable
 - process
 - technologies
 - cost
- Site, source, carbon, cost ZEB
 - Includes plug loads and datacenter
- Design/Build Process with required energy goals

Energy Modeling

NREL RSF Energy Use Breakdown

End Use	kBtu/ft2
Lights	3.85
Task Lights	0.19
Data Center	10.60
Data Center Cooling	0.01
Data Center Fans	0.55
Office Plug Loads	9.16
Space Heating	6.11
Space Cooling	1.42
Pumps	0.27
Ventilation Fans	1.61
Domestic Hot Water	0.13
Exterior Lights	0.12

NREL RSF Annual Energy Consumption Comparison

Open plan, narrow floor plate for natural lighting and ventilation

Daylighting: Additional Considerations

- •"Superior" daylight to all possible zones
 - •Open and closed office, conference rooms, stairs, copy/break rooms, library, exercise, cafeteria, lobby
- Minimize HVAC obstructions
 - •Don't want to block daylighting with overhead ductwork
 - Underfloor ventilation air
 - •Radiant ceiling heating/cooling
- •Orient steel decking ridges perpendicular to south/north orientation
 - •minimize "light dams"
- High reflectance interiors
 - •furniture, ceilings, walls, structure, etc
 - •90% plus acoustic panels

RSF Lighting Energy vs. Model

HVAC System

- DOAS underfloor in office areas
- Natural Ventilation in office, corridors, and conference rooms
- •Radiant Heating and Cooling in offices with core and N/S zones
- VAV for conference rooms
- Campus Hot water and chilled water
 - Wood chip boiler 80% of hot water
 - High efficiency water cooled chillers
- •Increased campus square footage by 60%, energy use by 6%
- 1,000 ft² per Ton of central plant cooling
 - •typical 300-400 ft² /Ton

Radiant Heating and Cooling in Ceiling Slab

Best Practices Guide

Data Centers...

- Account for over 85MW of electrical power within DOE
- Continue to exhibit load growth
- Could account for 10 15 percent of Federal facility energy use
- Make up an estimated 15 percent of DOE's electric bill

FEMP has compiled an overview of best practices for energy efficiency - much of which applies to HPC centers

FEDERAL ENERGY MANAGEMENT PROGRAM

Best Practices Guide for Energy-Efficient Data Center Design

January 2010

http://www1.eere.en ergy.gov/femp/pdfs/e edatacenterbestprac tices.pdf

FEMP

Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, NREL is operated by the Alliance for Sustainable Energy, LLC.

BPG Table of Contents

- 1. Summary
- 2. Background
- 3. Information Technology Systems
 - Efficient Servers, Storage Devices, Network Equipment, Power
 Supplies, Consolidation (Hardware Location & Virtualization)
- 4. Environmental Conditions
- 5. Air Management
 - Cable Management, Aisle
 Separation & Containment, Supply
 & Return Air Configuration,
 Temperature Set Points

6. Cooling Systems

Direct Expansion (DX), Air Handlers,
 Chilled Water Systems, Free Cooling,
 Thermal Storage, Direct Liquid Cooling

7. Electrical Systems

- Power Distribution, UPS, PDU, Distribution Voltage, Demand Response, DC Power, Lighting
- 8. Other Opportunities for Energy Efficient Design
 - On-Site Generation, Waste Heat
- 9. Data Center Metrics & Benchmarking

RSF Data Center

Nation State of the Control of the C

BASEMENT FLOOR PLAN

NREL RESEARCH SUPPORT FACILITY

RSF Data Center

RSF Plug Load Reduction Strategies

Pro Rated Day Time Plug Load Energy

ZEB RENEWABLE HIERARCHY

- 0. Energy efficiency
 - Daylighting, CHP, passive solar
- 1. Footprint supply options
 - Building mounted PV or wind
- 2. Site supply options
 - Parking lot PV or wind
- 3. Imported supply options
 - Wood chips, ethanol
- 4. Purchase of renewable credits

RSF Energy Monitoring

Outside Relative Humidity: 33.4 %RH

Mechanical

Heating

Total Building Load

PV Production

Net Energy Use

Lighting

Plug Loads

◆ Data Center ◆ Cooling

Wind Direction: SE

RSF Renewables

Davis Langdon LEED and Cost study

"Construction Costs normalized by location and time of construction"

http://www.davislangdon.com/upload/images/publications/USA/The%20Cost%20of%20Green%20Revisited.pdf

Cost of Green Revisited: Reexamining the Feasibility and Cost Impact of Sustainable Design in the Light of Increased Market Adoption July 2007 |

A Local Comparison - EPA Region 8 Headquarters in Denver

- 67.4 kBtu/sf/yr 2008 measured EUI
- Total Floorspace: 301,292 ft²
- Year(s) EnergyStar Labeled (Rating): 2008 (96)
 850 employees
- \$90 Million Building costs (\$298/ft²), \$12.5 site costs
- 355 ft² / occupant ~ GSA typical occupant density
- Final RSF Occupant Density with 220,000 ft² and 822 occupants = 268 ft² / occupant (\$259/ft²), 35 kBtu/sf/yr

http://www.wbdg.org/references/cs_epadenver.php

http://www.energystar.gov/index.cfm?fuseaction=labeled_buildings.showProfile&profile_id=1006713

Ending Thoughts...

- Zero is Possible
- Zero takes a coordinated effort with the owner (and all user groups), architect, builder, and the engineering
- The little things make the difference in getting to zero
 - as you get to zero, little is significant-

1 watt saved = \$33 of avoided PV costs

- Thermal breaks
- 2 W/phone less with display switched off at night!
- The owner needs to set measurable contractual goals and communicate these goals to the design team
 - \$ incentive helps too
- The solution is not bigger supplies
- How can we reduce plug loads?

Beauty in the Numbers

